lucifer

最大子序列和是一道经典的算法题, leetcode 也有原题《53.maximum-sum-subarray》,今天我们就来彻底攻克它。

题目描述

求取数组中最大连续子序列和,例如给定数组为 A = [1, 3, -2, 4, -5], 则最大连续子序列和为 6,即 1 + 3 +(-2)+ 4 = 6。

首先我们来明确一下题意。

  • 题目说的子数组是连续的
  • 题目只需要求和,不需要返回子数组的具体位置。
  • 数组中的元素是整数,可能是正数,负数和 0。
  • 子序列的最小长度为 1,不能为空。(这点很讨厌,不过题目就是这样~)

比如:

  • 对于数组 [1, -2, 3, 5, -3, 2], 应该返回 3 + 5 = 8
  • 对于数组 [0, -2, 3, 5, -1, 2], 应该返回 3 + 5 + -1 + 2 = 9
  • 对于数组 [-9, -2, -3, -5, -3], 应该返回 -2(不能返回 0,即什么都不选)

解法一 - 暴力法(超时法)

一般情况下,先从暴力解分析,然后再进行一步步的优化。

思路

我们来试下最直接的方法,就是计算所有的子序列的和,然后取出最大值。
记 Sum[i,….,j]为数组 A 中第 i 个元素到第 j 个元素的和,其中 0 <= i <= j < n,遍历所有可能的 Sum[i,….,j] 即可。

枚举以 0,1,2…n-1 开头的所有子序列,对于每一个以其开头的子序列,都去枚举从当前开始到索引 n-1 的情况。

这种做法的时间复杂度为 O(N^2), 空间复杂度为 O(1)。

代码

JavaScript:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
function LSS(list) {
const len = list.length;
let max = -Number.MAX_VALUE;
let sum = 0;
for (let i = 0; i < len; i++) {
sum = 0;
for (let j = i; j < len; j++) {
sum += list[j];
if (sum > max) {
max = sum;
}
}
}

return max;
}

Java:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
class MaximumSubarrayPrefixSum {
public int maxSubArray(int[] nums) {
int len = nums.length;
int maxSum = Integer.MIN_VALUE;
int sum = 0;
for (int i = 0; i < len; i++) {
sum = 0;
for (int j = i; j < len; j++) {
sum += nums[j];
maxSum = Math.max(maxSum, sum);
}
}
return maxSum;
}
}

Python 3:

1
2
3
4
5
6
7
8
9
10
11
12
13
import sys
class Solution:
def maxSubArray(self, nums: List[int]) -> int:
n = len(nums)
maxSum = -sys.maxsize
sum = 0
for i in range(n):
sum = 0
for j in range(i, n):
sum += nums[j]
maxSum = max(maxSum, sum)

return maxSum

空间复杂度非常理想,但是时间复杂度有点高。怎么优化呢?我们来看下下一个解法。

解法二 - 分治法

思路

先把数组平均分成左右两部分。

此时有三种情况:

  • 最大子序列全部在数组左部分
  • 最大子序列全部在数组右部分
  • 最大子序列横跨左右数组

对于前两种情况,我们相当于将原问题转化为了规模更小的同样问题。

对于第三种情况,由于已知循环的一个端点(即中点),我们只需要进行一次循环,分别找出
左边和右边的端点即可。

因此我们可以每次都将数组分成左右两部分,然后分别计算上面三种情况的最大子序列和,取出最大的即可。

举例说明,如下图:


(by snowan)

这种做法的时间复杂度为 O(N*logN), 空间复杂度为 O(1)。

代码

JavaScript:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
function helper(list, m, n) {
if (m === n) return list[m];
let sum = 0;
let lmax = -Number.MAX_VALUE;
let rmax = -Number.MAX_VALUE;
const mid = ((n - m) >> 1) + m;
const l = helper(list, m, mid);
const r = helper(list, mid + 1, n);
for (let i = mid; i >= m; i--) {
sum += list[i];
if (sum > lmax) lmax = sum;
}

sum = 0;

for (let i = mid + 1; i <= n; i++) {
sum += list[i];
if (sum > rmax) rmax = sum;
}

return Math.max(l, r, lmax + rmax);
}

function LSS(list) {
return helper(list, 0, list.length - 1);
}

Java:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
class MaximumSubarrayDivideConquer {
public int maxSubArrayDividConquer(int[] nums) {
if (nums == null || nums.length == 0) return 0;
return helper(nums, 0, nums.length - 1);
}
private int helper(int[] nums, int l, int r) {
if (l > r) return Integer.MIN_VALUE;
int mid = (l + r) >>> 1;
int left = helper(nums, l, mid - 1);
int right = helper(nums, mid + 1, r);
int leftMaxSum = 0;
int sum = 0;
// left surfix maxSum start from index mid - 1 to l
for (int i = mid - 1; i >= l; i--) {
sum += nums[i];
leftMaxSum = Math.max(leftMaxSum, sum);
}
int rightMaxSum = 0;
sum = 0;
// right prefix maxSum start from index mid + 1 to r
for (int i = mid + 1; i <= r; i++) {
sum += nums[i];
rightMaxSum = Math.max(sum, rightMaxSum);
}
// max(left, right, crossSum)
return Math.max(leftMaxSum + rightMaxSum + nums[mid], Math.max(left, right));
}
}

Python 3 :

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
import sys
class Solution:
def maxSubArray(self, nums: List[int]) -> int:
return self.helper(nums, 0, len(nums) - 1)
def helper(self, nums, l, r):
if l > r:
return -sys.maxsize
mid = (l + r) // 2
left = self.helper(nums, l, mid - 1)
right = self.helper(nums, mid + 1, r)
left_suffix_max_sum = right_prefix_max_sum = 0
sum = 0
for i in reversed(range(l, mid)):
sum += nums[i]
left_suffix_max_sum = max(left_suffix_max_sum, sum)
sum = 0
for i in range(mid + 1, r + 1):
sum += nums[i]
right_prefix_max_sum = max(right_prefix_max_sum, sum)
cross_max_sum = left_suffix_max_sum + right_prefix_max_sum + nums[mid]
return max(cross_max_sum, left, right)

解法三 - 动态规划

思路

上面的分治虽然将问题规模缩小了,但是分解的三个子问题有两个是规模变小的同样问题,而有一个不是。 那能不能将其全部拆解为规模更小的同样问题,并且能找出
递推关系呢? 如果可以,那么我们就可以使用记忆化递归或者动态规划来解决了。

不妨假设问题 Q(list, i) 表示 list 中以索引 i 结尾的情况下最大子序列和,那么原问题就转化为 max(Q(list, i)), 其中 i = 0,1,2…n-1 。

明确了状态, 继续来看下递归关系,这里是 Q(list, i)和 Q(list, i - 1)的关系,即如何根据 Q(list, i - 1) 推导出 Q(list, i)。

如果已知 Q(list, i - 1), 我们可以将问题分为两种情况,即以索引为 i 的元素终止,或者只有一个索引为 i 的元素。

  • 如果以索引为 i 的元素终止, 那么就是 Q(list, i - 1) + list[i]
  • 如果只有一个索引为 i 的元素,那么就是 list[i]

分析到这里,递推关系就很明朗了,即Q(list, i) = Math.max(0, Q(list, i - 1)) + list[i]

举例说明,如下图:

53.maximum-sum-subarray-dp.png
(by snowan)

这种算法的时间复杂度 O(N), 空间复杂度为 O(1)

代码

JavaScript:

1
2
3
4
5
6
7
8
9
10
function LSS(list) {
const len = list.length;
let max = list[0];
for (let i = 1; i < len; i++) {
list[i] = Math.max(0, list[i - 1]) + list[i];
if (list[i] > max) max = list[i];
}

return max;
}

Java:

1
2
3
4
5
6
7
8
9
10
11
class MaximumSubarrayDP {
public int maxSubArray(int[] nums) {
int currMaxSum = nums[0];
int maxSum = nums[0];
for (int i = 1; i < nums.length; i++) {
currMaxSum = Math.max(currMaxSum + nums[i], nums[i]);
maxSum = Math.max(maxSum, currMaxSum);
}
return maxSum;
}
}

Python 3:

1
2
3
4
5
6
7
8
class Solution:
def maxSubArray(self, nums: List[int]) -> int:
dp = [0] * len(nums)
ans = dp[0] = nums[0]
for i in range(1, len(nums)):
dp[i] = max(nums[i], dp[i - 1] + nums[i])
ans = max(ans, dp[i])
return ans

解法四 - 数学分析(前缀和)

思路

最后通过数学分析来看一下这个题目。

定义函数 S(i) ,它的功能是计算以 0(包括 0)开始加到 i(包括 i)的值。那么 S(j) - S(i - 1) 就等于 从 i 开始(包括 i)加到 j(包括 j)的值。

我们进一步分析,实际上我们只需要遍历一次计算出所有的 S(i), 其中 i 等于 0,1,2….,n-1。然后我们再减去之前的 S(k),其中 k 等于 0,1,i - 1,中的最小值即可。 因此我们需要
用一个变量来维护这个最小值,还需要一个变量维护最大值。

这种算法的时间复杂度 O(N), 空间复杂度为 O(1)。

其实很多题目,都有这样的思想, 比如之前的《每日一题 - 电梯问题》。

代码

JavaScript:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
function LSS(list) {
const len = list.length;
let max = list[0];
let min = 0;
let sum = 0;
for (let i = 0; i < len; i++) {
sum += list[i];
if (sum - min > max) max = sum - min;
if (sum < min) {
min = sum;
}
}

return max;
}

Java:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
class MaxSumSubarray {
public int maxSubArray3(int[] nums) {
int maxSum = nums[0];
int sum = 0;
int minSum = 0;
for (int num : nums) {
// prefix Sum
sum += num;
// update maxSum
maxSum = Math.max(maxSum, sum - minSum);
// update minSum
minSum = Math.min(minSum, sum);
}
return maxSum;
}
}

Python 3:

1
2
3
4
5
6
7
8
9
10
11
class Solution:
def maxSubArray(self, nums: List[int]) -> int:
n = len(nums)
maxSum = nums[0]
minSum = sum = 0
for i in range(n):
sum += nums[i]
maxSum = max(maxSum, sum - minSum)
minSum = min(minSum, sum)

return maxSum

扩展

如果题目变化为如下,问题该怎么解决呢?

1
求取数组拼接 k 次的最大连续子序列和,例如给定数组为 A = [1, 3, 4, -5] ,k = 2, 拼接会的数组为 [1, 3, 4, -5, 1, 3, 4, -5],那么最大连续子序列和为 11,即子数组 [1, 3, 4, -5, 1, 3, 4] 的和。

直接将 A 拼接 k 次后转化为上面的问题的话空间会超出限制,空间复杂度为 $O(n * k)$。代码:

1
2
3
4
5
6
7
class Solution:
def solve(self, A, k):
A = A * k
dp = [0] * len(A)
for i in range(len(A)):
dp[i] = max(A[i], dp[i - 1] + A[i])
return max(dp)

然而实际上,我们可以仅拼接两次,因为当拼接次数大于 2,那么之后只是无限循环罢了。这种算法空间复杂度可以降低到 $O(n)$。

经过这样的处理,问题转化为求: A 拼接 min(2, k) 次后的最大子序和 + max(0, k-2) 次 A 的和(如果 A 的和小于 0,则不必加)。

代码:

1
2
3
4
5
6
7
8
9
class Solution:
def solve(self, nums, k):
if not nums or not k:
return 0
A = nums * min(2, k)
dp = [0] * (len(A) + 1)
for i in range(len(A)):
dp[i] = max(A[i], dp[i - 1] + A[i])
return max(dp) + max(0, sum(nums)) * max(0, (k - 2))

总结

我们使用四种方法解决了《最大子序列和问题》,并详细分析了各个解法的思路以及复杂度,相信下次你碰到相同或者类似的问题的时候也能够发散思维,做到一题多解,多题一解

实际上,我们只是求出了最大的和,如果题目进一步要求出最大子序列和的子序列呢?如果要题目允许不连续呢? 我们又该如何思考和变通?如何将数组改成二维,求解最大矩阵和怎么计算?
这些问题留给读者自己来思考。


 评论


博客内容遵循 署名-非商业性使用-相同方式共享 4.0 国际 (CC BY-NC-SA 4.0) 协议

本站使用 Material X 作为主题 。
载入天数...载入时分秒...